Deep Keyphrase Generation

نویسندگان

  • Rui Meng
  • Sanqiang Zhao
  • Shuguang Han
  • Daqing He
  • Peter Brusilovsky
  • Yu Chi
چکیده

Keyphrase provides highly-summative information that can be effectively used for understanding, organizing and retrieving text content. Though previous studies have provided many workable solutions for automated keyphrase extraction, they commonly divided the to-be-summarized content into multiple text chunks, then ranked and selected the most meaningful ones. These approaches could neither identify keyphrases that do not appear in the text, nor capture the real semantic meaning behind the text. We propose a generative model for keyphrase prediction with an encoder-decoder framework, which can effectively overcome the above drawbacks. We name it as deep keyphrase generation since it attempts to capture the deep semantic meaning of the content with a deep learning method. Empirical analysis on six datasets demonstrates that our proposed model not only achieves a significant performance boost on extracting keyphrases that appear in the source text, but also can generate absent keyphrases based on the semantic meaning of the text. Code and dataset are available at https://github.com/memray/seq2seqkeyphrase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Keyphrase Cloud Generation of Broadcast News

This paper describes an enhanced automatic keyphrase extraction method applied to Broadcast News. The keyphrase extraction process is used to create a concept level for each news. On top of words resulting from a speech recognition system output and news indexation and it contributes to the generation of a tag/keyphrase cloud of the top news included in a Multimedia Monitoring Solution system f...

متن کامل

A Keyphrase Generation Technique Based upon Keyphrase Extraction and Reasoning on Loosely Structured Ontologies

Associating meaningful keyphrases to documents and web pages is an activity that can greatly increase the accuracy of Information Retrieval and Personalization systems, but the growing amount of text data available is too large for an extensive manual annotation. On the other hand, automatic keyphrase generation, a complex task involving Natural Language Processing and Knowledge Engineering, ca...

متن کامل

Reducing Over-generation Errors for Automatic Keyphrase Extraction using Integer Linear Programming

We introduce a global inference model for keyphrase extraction that reduces overgeneration errors by weighting sets of keyphrase candidates according to their component words. Our model can be applied on top of any supervised or unsupervised word weighting function. Experimental results show a substantial improvement over commonly used word-based ranking approaches.

متن کامل

KERT: Automatic Extraction and Ranking of Topical Keyphrases from Content-Representative Document Titles

We introduce KERT (Keyphrase Extraction and Ranking by Topic), a framework for topical keyphrase generation and ranking. By shifting from the unigram-centric traditional methods of unsupervised keyphrase extraction to a phrase-centric approach, we are able to directly compare and rank phrases of different lengths. We construct a topical keyphrase ranking function which implements the four crite...

متن کامل

A Refined Methodology for Automatic Keyphrase Assignment to Digital Documents

AbstrAct: Keyphrases precisely express the primary topics and themes of documents and are valuable for cataloging and classification. Manually assigning keyphrases to existing documents is a tedious task; therefore, automatic keyphrase generation has been extensively used to classify digital documents. Existing automatic keyphrase generation algorithms are limited in assigning semantically rele...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017